Derivation of the Zakharov equations

نویسنده

  • Benjamin Texier
چکیده

This paper continues the study, initiated in [28, 8], of the validity of the Zakharov model describing Langmuir turbulence. We give an existence theorem for a class of singular quasilinear equations. This theorem is valid for well-prepared initial data. We apply this result to the Euler-Maxwell equations describing laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic estimate that describes solutions of the Euler-Maxwell equations in terms of WKB approximate solutions which leading terms are solutions of the Zakharov equations. Because of transparency properties of the EulerMaxwell equations put in evidence in [28], this study is led in a supercritical (highly nonlinear) regime. In such a regime, resonances between plasma waves, electromagnetric waves and acoustic waves could create instabilities in small time. The key of this work is the control of these resonances. The proof involves the techniques of geometric optics of Joly, Métivier and Rauch [13, 14], recent results of Lannes on norms of pseudodifferential operators [15], and a semiclassical, paradifferential calculus. ∗Indiana University, Bloomington, IN 47405; [email protected]. This research was partially supported under NSF grant number DMS-0300487. The author warmly thanks Christophe Cheverry, Thierry Colin, David Lannes, Guy Métivier, and Kevin Zumbrun, for the interest they showed for this work and many very interesting discussions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of the fractional Zakharov-Kuznetsov equations by reduced dierential transform method

In this paper an approximate analytical solution of the fractional Zakharov-Kuznetsov equations will be obtained with the help of the reduced differential transform method (RDTM). It is in-dicated that the solutions obtained by the RDTM are reliable and present an effective method for strongly nonlinear fractional partial differential equations.

متن کامل

Variational principle for Zakharov-Shabat equations in two-dimensions

We study the corresponding scattering problem for Zakharov and Shabat compatible differential equations in two-dimensions, the representation for a solution of the nonlinear Schrödinger equation is formulated as a variational problem in two-dimensions. We extend the derivation to the variational principle for the Zakharov and Shabat equations in one-dimension. We also developed an approximate a...

متن کامل

Derivation of a viscous Boussinesq system for surface water waves

In this article, we derive a viscous Boussinesq system for surface water waves from Navier-Stokes equations. So, we use neither the irrotationality assumption, nor the Zakharov-Craig-Sulem formulation. During the derivation, we find the bottom shear stress, and also the decay rate for shallow (and not deep) water. In order to justify our derivation, we check it by deriving the viscous Korteweg-...

متن کامل

Analytic Solution of Fuzzy Second Order Differential Equations under H-Derivation

In this paper, the solution of linear second order equations with fuzzy initialvalues are investigated. The analytic general solutions of them using a rstsolution is founded. The parametric form of fuzzy numbers to solve the secondorder equations is applied. The solutions are searched in four cases. Finallythe example is got to illustrate more and the solutions are shown in gures forfour cases.

متن کامل

Determinant form of modulation equations for the semiclassical focusing Nonlinear Schrödinger equation

We derive a determinant formula for the WKB exponential of singularly perturbed Zakharov-Shabat system that corresponds to the semiclassical (zero dispersion) limit of the focusing Nonlinear Schrödinger equation. The derivation is based on the RiemannHilbert Problem (RHP) representation of the WKB exponential. We also prove its independence of the branchpoints of the corresponding hyperelliptic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008